Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing species.
نویسندگان
چکیده
Patch occupancy theory predicts that a trade-off between competition and dispersal should lead to regional coexistence of competing species. Empirical investigations, however, find local coexistence of superior and inferior competitors, an outcome that cannot be explained within the patch occupancy framework because of the decoupling of local and spatial dynamics. We develop two-patch metapopulation models that explicitly consider the interaction between competition and dispersal. We show that a dispersal-competition trade-off can lead to local coexistence provided the inferior competitor is superior at colonizing empty patches as well as immigrating among occupied patches. Immigration from patches that the superior competitor cannot colonize rescues the inferior competitor from extinction in patches that both species colonize. Too much immigration, however, can be detrimental to coexistence. When competitive asymmetry between species is high, local coexistence is possible only if the dispersal rate of the inferior competitor occurs below a critical threshold. If competing species have comparable colonization abilities and the environment is otherwise spatially homogeneous, a superior ability to immigrate among occupied patches cannot prevent exclusion of the inferior competitor. If, however, biotic or abiotic factors create spatial heterogeneity in competitive rankings across the landscape, local coexistence can occur even in the absence of a dispersal-competition trade-off. In fact, coexistence requires that the dispersal rate of the overall inferior competitor not exceed a critical threshold. Explicit consideration of how dispersal modifies local competitive interactions shifts the focus from the patch occupancy approach with its emphasis on extinction-colonization dynamics to the realm of source-sink dynamics. The key to coexistence in this framework is spatial variance in fitness. Unlike in the patch occupancy framework, high rates of dispersal can undermine coexistence, and hence diversity, by reducing spatial variance in fitness.
منابع مشابه
Sink habitats can alter ecological outcomes for competing species
1. Species often compete for breeding sites in heterogeneous landscapes consisting of sources and sinks. To understand how the presence or absence of sink breeding sites influence ecological outcomes, we extend Pulliam’s source–sink model to competing species. 2. In a homogeneous landscape consisting of source sites, we prove that one species, the ‘superior’ competitor, competitively excludes t...
متن کاملMechanisms of coexistence in competitive metacommunities.
Although there is a large body of theory on spatial competitive coexistence, very little of it involves comparative analyses of alternative mechanisms. We thus have limited knowledge of the conditions under which multiple spatial mechanisms can operate or of emergent properties arising from interactions between mechanisms. Here we present a mathematical framework that allows for comparative ana...
متن کاملMass effects mediate coexistence in competing shrews.
Recent developments in metacommunity theory have raised awareness that processes occurring at regional scales might interfere with local dynamics and affect conditions for the local coexistence of competing species. Four main paradigms are recognized in this context (namely, neutral, patch-dynamics, species-sorting, and mass-effect), which differ according to the role assigned to ecological or ...
متن کاملPlant sink-source relationships and carbon isotopic labeling techniques . Taher Barzegar* and Fatemhe Nekounam
The concept of source and sink strength is presently well-recognized and accepted by the scientific community as a pertinent approach describing the mechanisms of carbohydrate partitioning into the different and competing organs at a whole plant or canopy scales. Sink–source relationships have a clear role in the size of sink organs. Besides the effect on organ size, sink/source ratio might also...
متن کاملCompeting populations in flows with chaotic mixing.
We investigate the effects of spatial heterogeneity on the coexistence of competing species in the case when the heterogeneity is dynamically generated by environmental flows with chaotic mixing properties. We show that one effect of chaotic advection on the passively advected species (such as phytoplankton, or self-replicating macro-molecules) is the possibility of coexistence of more species ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American naturalist
دوره 158 6 شماره
صفحات -
تاریخ انتشار 2001